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ABSTRACT

The class of tnterpolatory-Newton iterations is defined and analyzed

for the computation of a simple zero of a non-linear operator in a Banach

space of finite or infinite dimension. Convergence of the class is estab-

lished.

The concepts of “informationally optimal class of algorithms” and

“optimal algorithm” are formalized. For the multivariate case, the optimal-

ity of Newton iteration is established in the class of one—point iterations

under an “equal cost assumption ~~~
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.1. INTRODUCTION

In Traub and Wo~niakowski [76cJ we investigate the class of direct inter-

polatory iterations I for a simple zero of a non-linear operator in a Banach

space of finite or infinite dimension. The solution of a “polynomial operator

ii . equation” is required at each step . In .this paper we consider the solution

of this polynomial operator equation by a certain number of Newton iteration

steps. We call this the class of Interpolatory-Newton iterations IN .  We

analyze the convergence and complexity of this class.

Traub and Woz’niakowski [76c] show that the radius of the ball of conver-

gence of I~ can grow with n. Since IN uses Newton iteration as its “inner

process” its convergence characteristics are similar to Newton iteration

(Traub and Woz#niakowski [77 J) and the convergence is only “local”. A “type

of global convergence” is established for a certain class of operators.

The complexity analysis of IN~ requires some new complexity concepts. We

forma l ize the idea of “optimal algorithm” . Under an “equal cos t assumption”

(and one additional reasonable assumption) we establish the optimality of 13
for scalar problems and the optimality of IN2 

E 12 (Newton iteration) for

multivariate prob lems . However , if the equal cost assumption is violated a

high order iteration is optimal.

We suusnarize the results of this paper. Convergence of the class of

iterations is establ ished in Section 3. General complexity results are obtained

in Section 4 and used to es tablish the optimality results of Section 5. In the

final section we analyze a class of prob lems for which Newton iteration is notr optimal.

_ _ _ _ _- 
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2. INTERPOLATORY- NEWTON ITERATION IN

In Traub and Wdniakowski (76c ) we consider interpotatory iteration I

for the solution of the non-linear operator equation

(2.1) F(x) — 0

where F: D C B
1 

-. B2 and B1, B2 are real or complex Banach spaces of dimens ion

N, N dim (B
1
) dim (B

2
), 1 � N � +~~. The interpolatory iteration I is de-

fined as follows. Let x~ be an approximation to the simple solution ~ and let

be the interpolatory polynomial of degree ~ n- 1 such that

(2.2) w
~~~

(x
~
) a 

~~~~~~~~ j 0,1,...,n— 1.

* *where n ~ 2. The next approximation x~~1 is a zero of w~, wi (x i+i) — 0 , with

a certain criterion of its choice. Note that for n — 2 we get Newton itera-

tion since X
j+l 

— Xj  - F( x~)~~~F(x~) .  The degree of w~ is, in general, equal

to n-i and for n � 3 we get a “polynomial operator equation” for x~~1. There

are a number of ways for dealing with the problem of solving this equation

numerically. In this paper we will approximate x~~1 
by applying a number of

Newton iterations to the equation wj(x) a 0. Let

(2.3) Z~~ .1 
— Z

j  
— wj(z

1
)’w~ (z~). j —

x ~~zi+l k

where k — na g 2 ni.
We shall call the iteration constructing fx1) by (2.3) the interpolatory-

Newton iteration IN~. This is a one-point stationary iteration without memory

— ‘~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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in the sense of Traub [64]. Note that for n 2, (2.3) reduces to Newton

iteration and IN2 I~. To compute z
j÷l 

one must solve the linear equation

w~ (z
j
) (z

j
_z
j+i
) — W

j (Z
j
). We do not specify what algorithm is used to

solve this linear equation. In fact, IN~ is the name of a class of iterations

which use the same information (2.2), and perform k Newton steps to solve

v
i
(x) — 0 but they can differ in the algorithm used to solve the linear equa-

ton. For example, by Newton iteration we mean any it~ration which produces

x~~1 
x. - F’ (x~)

’F(x)~~ no matter what algorithm ...is used to compute

Some properties of the interpolatory iteration n � 2, will be used

to establish the convergence of IN
S
. Let ~ be the simple solution of F(x) 

a

and 3 a (x: flic- c4 1 � 1’). Define

(j)
-iF (x)

(2.4) A A 4 (r) a sup I~”(°~
) 

, j a 2,3,...
xEJ

whenever ~(J) 
exists.

From theorem 2.1 in Traub and Woz
#
niakowski [76c ] directly follows

Theorem 2.1

If F is twice differentiable in 3 and

(2.5) A 2r

(2.6) x~ E 3

then the next approximation x
~~1 

constructed by Newton iteration satisfies

~ 
1_2A

2I~
cj~~ II II~i

_ c
~IF ‘F~~~

11,
(2. 1)

+ o( I~c j-cY IF) : U

-

~~~~

-

~-- ~~~~~~~~~~~~~~~~~
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Furthermore , from theorem 2.1 in Traub and Wo~niakowski [76e] follows

Theorem 2.2

If F is n-times different iable, n ~ 3 , in J , and

nA n-i
(2.8) 

~~~~~ ~~~~~~

(2.9) Xj 
E 3

then the polynomial w~ has a 
unique zero in — [x: II~c-o~II ~ 

.ir) and defining

x * as the zero of w~ in 3 we get
i+1 1.

(2 .10) 
A ( 1 i+l~~~~~~~I ) n 

~~~~~1-A2 ~~~~~~

(2.11) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ o ( I ~ci_c4P) . U

-k.. - ~~~~~~~~~~~~~~ — _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — _

~~~~~~~~~~~~ - ___
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3 • CON VERGENC E OF INTERPOLA TORy- NEWTON ITERATION

We study the convergence of IN for n ~ 3. Let e~ ~~~~ ~~~~~~
n

Theorem 3.1

If F is n-times differentiable, n ~ 3, in 3 and

(3.1) 0 �

where A
2 + ~~~

•• 11A (2F)~~~
2

2 nA
2 n-l

1 - A2~ - nAn) ~n-l

(3.2) x0 E J

then the sequence [x1) constructed by the interpolatory-Newton iteration INn
is well-defined and

(3.3) x~ E 3, Vi,

� &1+~~~~))e~ vi,(3.4) lim x
i ~~, e~~1 2

n(3.5) e � C e wherei+l i,n i

* k
— 4+ *~~ 1 A

__

* 
2k1 ~

4
~
e.+1\ 12-~~

i,n 

~ j )C_A2C~1
+ (r2

( l+R~) )  - 

~~ ej )eij

• for e —
* 

~c~4.1 -~~j , H~ — O(e~) and 0 � H~ � 
~~~, k a n~0~2 ni,i+1

• lim C — A + 6r
n_ l where 6 0 j f 2k — n , and ~ a 1 if 2k a

~ 
i,n n

‘F ~~~~~~~~~~~ 
—

~
-
--
— 

~~~~~~~~~~~~~~ - -~~-_--_ -. _.
~~~~ • — -~
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(3.6) ~~~~~~ 
a F~~(X~~_~~)

n 
+ b i k  +

where 2F~~(x~~~ )

b i j+ i F2 b~
2
~ , j 1,2,. ..,k—l

and

F~ 
(~~) i 

F’(~~~~~~~~(~) for J = 2 and n . U

Proo f

Assume by induction that x~ E 3. We want to show that the interpolatory-

Newton iteration is well-defined, i.e., wl(zj) is invertible. First we shall

prove that w ’ (x) is invertible for x E 3 and next that z. E J. Denote

(3.7) ~~~~~~ — w~~~ (x) R~~~(x;x~) for x € J, j = 0,1,2,

where

see Rail [69 , p.124]. Since

w~(x) 
a F’(x) — R’(x;x~) F’(o)[I + F’(~)

1
fF’(x) — F’ (n ) ) — F’(o~)~~ R’ (x ;x~)]

then from (3.7) and (3.1) we get for x E 3

(3.8) J~
”(
~
)
~~

’w1(x) - I II � 2A2 I~c-r y II + nA I~c—x j lP~ �

- + nA (2 r)”~~ � a < 1.

From theorem 10.1 in Rali [69 , p .36]  it follows that w~ (x) is invertible for

any x E 3 and

_ _ _ _ _ _ _ _ _ _ _ _  - - -
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(3.9) Fz ,(x) ’F’ (~) ii
I - 2A -y ~ -nA ~c-x i l

n i

Since the denominator in (3.1) is positive then

n A T~~~ 
(4

~~1~ 1

l-A2 F <

and from theorem 2.2 follows that the polynomial w~ has a unique zero in

[x: ~c-~~j j � iF), w(xi 1 ) a 0, and (2.10) holds. From (3.9) and (3.7) we

get f o r x E J

w” (x)
* -l w’~(x) 

II ~ i~’ (x *
____  i i(3.10) I~

,
~
(x
i+l) 2 j i+~

)
~ ’(’~

)II I~ (~ 2

A + 
n(n_l)

A ~~~~~ 
~~-2 A + 

n(n_ l) A (2fl
n_ 2 

_2 n i ~~~2 2 n _

1 - 
~~2~~~i+l~~~” 

- ~~~~~~~~~~~~~~~ 1 - A2r - nA ( ~ r) ’~~ 
A2 .

We investigate the properties of Cz~ ) defined in (2.3) . Recall we solve
W j (X) — 0 by Newton iteration. Note that z 1 — x~ - F’ (x~Y ’F(x~ ) is the

Newton step applied to the equation F(x) 0. From (3.1) we know that

A2r ‘ 1/4 and from theorem 2.1 we get

� 

~J~ -~II
* *Since x~~1 E ~~ ~i

-xj÷iIJ � r.

* 1 *We prove tha t zj+l lies in D~ — Ex : j~c-x~ .1 jI �~~I~~-x~ .1 lI 3 ~ 3. Let

(3.11) w~ (x) - w~(z~) + w~ (z~)(x- z~) + ~2 (x;z
J

)

where R2(x;y) — J4 w~ (y + t ( x_ y ) ) (x_y ) 2 (j _ t )dt ,
0

_ _ _ _ _  _ _ _
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I
for x ,y E J , compare with ( 3 . 7) .  Note that z is the zero of the equationj+1

_ x  +w ~(3.12) x H(x) df * (x j +l)
l [~~ (x;z j ) -i+ 1

We show that H is con tractive on D~ . From (3.10) we have for x E D .

* �A (
i+lI~

(x)_x j+l 2 ftc- z~IF + Ik-x~ 1JF ) �
~~A2 Ik -x i  x *

due to (3.1) . Furthermore

* *Ihi(x) -~ I � ftc -cV II +J~1(x)-x � (1 + .i)r =i+l i+l 2 2

*
-x � 2A r < 1 then H is contracti.veThus H(D~) C D~. Since J~i’ (x) jj ~ 2r2 ll ~~. ~-t- l 2

on D~ and Zj+l is the unique zero in D . .
3

This proves that x~~ 1 Zk E J and

Ik~÷1-°JI Ik~÷1~~~llI + l~~1HI + 
~~~~~ -~II2

Ik~-~II

which yields (3.3) and (3.4) .

*Let e I~~-x.~ 
i+1U . Set x — in (3.12). Then

_ 

~~~~~ 
2

(3.13) 
~ A2

(l + e
1+1/

e
1
) 

,, ~~~ _

ej 
� A2 ( 1+H~)e~1 -

I

where H~ 0(
i
) and 0 � Hi � 5/2 , compare ( 2 . 7) .  S ince = O(e~ ) we can

wri te  H1 
— O(e

i). Next from (3.13) and (2.10) we get

_ _ _ _ _ _ _ _ _ _
- - - - — —~~---— —‘- - 

-
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e .~~1 I~ j÷1_ c~ � 
~~~~~~~~~~~ + 

~ i-i- l~~~ 1 = + I~~ - O JJ �

� [ (1+H 1)]
2 

J~~-x 1~1 iF + 
- 

~:ei:~~~~~ 

~~~~~~
)fl 

e~

� 

(
~ 

+

e

~~~~

l)fl(

~ 
A2e~~ 1 

+ [~~~(1÷H1
) ) 2 1[(1 + 

~~~~~~~~~~~~~~~~ a

i ,n i.

Since e .+l /e i and H~ tend to zero then

litn C  A +
• 

~ 
i,n n 2

kwhere 5 a 0 if 2 > n and 6 0 otherwise. Hence (3.5) holds .

Finally observe that

*I’ *• 
* , * — l  w j (x j+i) 

2Z
j~~1 

— w~ (x~~ 1
) 

2 (z j
_ x

j+l) + O(e~ ) —

— F ’ ~~~~~ F
~~~

) (Z
J

Xl:l ?+ O(e~~ 1~~ + —

* 2F2 (z
~

-x i~~
) + o(e~).

Thus

* * 2 2  2 2k
— xi+1 

a F2 (F2 ...
~~

(F2 (x j_x
~+i ) ) ... ) + o(e~ ) 

a

: 
— F

2(F2 ... (F2(~~-~)
2)2 )2 + o(e~~).

From the definition of b
i k  in (3.6) we get

*zk
_ x

i÷l b
L,k

+ o ( e
l ).

_ _ _ _  --- - - -

~~~~~ :‘ --— — —-— -
~

— - — — - — - — --- ---- -  —
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From th is  and (2.11) we have

* * n nx .  - z - x. + x .  - b . + F (x.-o~) + o(e .)1+1 k i-f- i t+1 i,k n 1 i.

which proves (3.6) and comp letes the proof of theorem 3.1.

Remark 3.1

It is possible to get a slightly better estimate than (3.1) although the

proof is much more complicated. Note that if n is not a power of 2 then

> n and the leading term in (3.6) is F
~~

(x i
_
~

) s ince ‘~ jk 1’ O(e~~ ) = o(e~ ) .

Remark 3.2

The idea of using New t on i terat ion to estimate a zero of art approximating

non-linear operator which fits the information of F can be app lied for any

iterations with or withou t memory; see Brent [76]  where Newton i t e r a t i o n  is

a lso used as an inner i terat ion.

Remark 3.3

Since Newton iteration is nuxt~erically stable it is relativel y easy to

ver if y the numerical s tabi l i ty  of the interpolatory-New t on i terat ion IN under

app ropr ia te  assumptions on the computed information of F, see Woz”niakowski

[76b] .

In general the interpolatory-N ewton i t e ra t ion  converges onl y loca ll y.  We

give condi t ions under which IN enjoys a “typ e of g lobal convergence ” . Compa re

the same prope r t y~ for Newton i teration in Traub and Woz~-tiakowski [ 77 ) . )

Le t F( x ) a L -~~-- F( (~ )(x~_
~ )

i be anal y t ic  in D Cx :  j~~-~~~ < R 3 and
i l

(3.14 ) ~~~~~~~~~~~~~~~~~ ~

_ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _-•
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for j  2 ,3 , . . . ,  R � 1/K.

One way to find K is to use Cauchy ’ s formula

j~~l (~)~~~~(i)()1J M
i~ R~

where M — sup Jfr ’ (~~~
’
F (x ) II . Setting K a 

~~~~~~~~~~~~~~ ;2
) we get WR � 

~~~ � (~~ )~~~l

which yields M/R � K

Theorem 3.2

If F satisfies (3.14) then the interpolatory Newton converges for

E j  f~x: ~c-n II � F )  where

and x , 0 < x < x , satisfies the equationo n

(3.15) 

~(~~ X) 3 + :~ ~~~~~~~~ ~ - 
(1~X) 3 - ( )

and x1~ ‘ x,, where x , is the smalles t positive solution of x/( 1-x) 3 1’6 and

x ,~~ .12. I

Proof

From (3.14 ) we get

~~~ ~~~~ 
~~(i) (x) � f (i) ( j ~~~~~~)

where f (x) ~c/(1-Kx). Since f~
t
~ (x) — i~ K~~

1/ ( l — K x)~~~ for i � 2 , we have

i—i
A 1(r) 

K 
~~~~~~ 

, i 2,3 
( 1-Kr)

___  ~~~~~~~~~~~ 

_ -z-~~~~~~~~
_ • - . -

• •~~~
- 

~~~ -—~~~~~ -~~~~~~ — -
_ —- .- - •- -~~~~ - - —-- -- — —_ _ _ _
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~0 Then (3.1) becomes

/ KF n(n- 1) 2KF ‘ ‘
\ (( Kr n / 3KrA2~~~�~~ 3 + _ _ _ _

\&1 KF) 4 ( l~ K~2(1~~~) / ~~~ ( l-K~~
3 - 

(1-K~~
2 ç2(l~ K~~~ ) a

Setting KI’ x we get that x satisfies the equation (3.15). It is straight-

forward to verify that x x(n) is an increasing function of n and h im x(n) x~
ci

where x satisfies the equation

x 1
a

Hence x .12 which proves theorem 3.2. 
U

This result is especially interesting if the domain radius R is related
c x x

to j
~
, say R — 

~~~~~. Then ~~ 
= —~~ —

~~ R ~ ~~~~~~~~~~ R and the interpolatory- Newtonn K C
1

iteration enjoys a “type of global convergence ” .

‘4

4
4~.

~~~~~ 

I

I .  -• -
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4. COMPLEX ITY OF ONE-POINT ITERATIONS

In this section we deal with c c,mplexity of one-poin t i terat ions . We

extend some of the resul ts  of Traub and Woz#niakowSki [76a] .

Assume that a one-point i teration c~ co nst ru cts the sequenc e x~~ 1 — cQ(x .;F)

conve rging to ~ and satisf ying

(4.1) e
1 

G~ ~~~~ e
1 ~~~~ 

i a

where p, p > 1, is called the order of i teration c~,

(4.2) 0 <C � G~ � G  <+~~, i a 1,2,... ,K

and the iteration is terminated af ter  K steps .

From (4.1) we get

. 1
p~ i i—i i—2 1.—i

(4.3) ci 
a
(i_) e

0 
where a (

~ G~ . . .G)P CO .

Not e that (e 0w
~

) ’
~~ is the geomet r ic mean of the G1, G2 , .  ..,G , . Fu rthermore

< e0 i f f  w~, > 1. From (4.2) we get

1 1
(4 .4) G~~~

1e � ~ e a 4
• W — 0

We sha ll assume that w > 1.

For a given c’ , 0 < e’ < 1, let K be the smallest index for wh ich e
K 

�

Define  c < c ’ so that

(4 .5) eK Ce 0 .

I
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Let comp comp(~p,F) be the total cost of finding Assume that the

cos t of the ith iterative step does not depend on the index i; we denote it

by c — c(ci,;F). Then

(4.6) comp cK.

From (4.3) and (4.5) we get

\p - l

(_— )  a e a n d K a -
log p

where

(4.7) g (w) — lg( 1 + -j~~~) .  t a ig i/c.

We take all logarithms for the remainder of this paper to base 2. Then from

(4.6) and (4.7) we get

(4 .8) comp — z g (wK
)

where

(4.9) z r~
.

is called the complexity index.

Since g(w) is a monotonicaliy decreasing function , (4.4) gives bounds on

complexity

(4.10) zg(w) � comp � zg(w).

Note that as e — 0 , g(w) ~ lgt and ccinp ~ zlgt. If we assume that

(4.11) 2 �w ~~~w � t

•~~~~~~~~~~~ -~~~~ - - -  ~~~~ - ~~~~~~~~~~~~~~~~~~~ ~~~-~~~~~-- • - r.. . —~~~ - --~~~- - - _
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then (4 .10) becomes

(4 .12) z ( lg t— l g lg t )  � comp ~ z

see theorem 3.1 in Traub and Wo~niakowski [76a] . In this case the complexity

index is a good measure of complexity.

We want to minimize the total cost of finding X
K • More precisely, for

a given operator F we wan t to find an iteration ‘~ with minimal complexity.

Since we do not know the value g(w
K
) in (4.8) we are not able to minimize

complexity . However , if (4.11) holds or c is small enough then minimal com-

plexity is approx imated for an iteration with minimal complexity index . So

we wish to find an iteration ~ whic h for a given problem has as small a com-

plexity index as possible.

The complexity index is given by z — c/lg p where c is the cost per one

iterative step and p is the order of an iteration. Assume that an iteration

uses the standard information (see WoIniakowski [75*]) 
~~ 

¶~~(x;F) 
a

The cost c — c(~~,~t) consists of the information

complexity u — u(P,~lt~) wh ich is the cost of computing ¶!~~(x;F) and the corn-

b inatory complexity d — d(cp~) which is the cost of combining information and

producing the next approximation. Then c u+d and (4.9) can be rewritten as

u(F,~ ) + d(~ )

(4.13) z(;) — jg
fl
p(
~~
)

We want to find an iteration which minimizes (4.13). Let

(4.14) z (F) — inf z(c, ) ,
c~~E~~

(4.15) z(F) — inf
n~2

• • ---——-- — - - • ~ 4 — 
~~~~~~~~~~~~~~~~~~~~~~ 

-. • - ---——-_
~~
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where 
~ 

is the clas s of one-point iterations using the standard informa-

tion with n evaluations . (Of course IN E 
~~~~~

, ~~.) We need lower and upper

bounds on z (F) and z(F) . Note that upper bounds can be obtained by the corn-

plexity index of any iteration c~~, e .g . ,  by the complexity index of the inter-

polatory-Newton iteration I N .  We shall deal with this in Section 5.

Throughout the rest of this paper we assume that the dimension of the

problem is f ini te, N < + .~~~

To find lower bounds on Zn (F) and z(F) we need a lower bound on

Note that

(4 .16) u(F ;~~~) = ~~ c(F~~~ )

iaO

where c(Y~~~) denotes the “cost” of computing F~~~~(x) . In the “cost ” one can

include all the costs of computing F
(i) 

including the cost of all arithmetic

operations needed to compute FW , the cost of variable data access, the cost

of subroutine calls , etc. For the sake of simplicity we assume that the cost

of one arithmetic operation is taken as unity.

• In general ~~~~~~ requires N(’~~4) different data for its representation.

The total number of data in ~ is equal to
n

(4.17) dN ,n - N~~ ~~~~~~~

For almost all problems the information cost u(F;~~) depends linearly on dN n .

‘1 To make this more precise we introduce

Definition 4.1 (Functional Independence Assumption)

We say F satisfies the funct ional  independence assumption if there exists

a positive constant CF such that

~~~~
•
~~~~~~~~~

• -~~~~~ ~~~~~.J~~~~~~~~~~~~~~~~~ - - -  - - 
-- 
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(4.18) u(F;~~) � C
F 

dN n  ~
1f l•  U

If F depends on al l  d i f f e ren t  data in ~~~~~ then , of  cour se , c~ is at

least equal to unity. However it can happen due to a special property of F

(like syimnetry of some F
(i)
) that the information cost u(F;~t~) is less than

d
N f l

. In the functional independence a~sumption we need not specify the

value of c~ as long as C
F 

is positive.

We estimate the combinatorial complexity d(c i~ ) .  Any iteration cp has to

use every piece of data at least once as well as the current approximation to

i. Thus

(4.19) d(~~) 
� 
~~~~

Since p (cp~) 
� n (see Traub and Wo~niakowski [76b]) for any iteration ~ we find

u(F ;~ ) + d ( ~ )

(4.20) z(cp ) a 
lg p(%) 

n 
~ 

(c
F
+l) lg

’
~ ~ 

(cF+ l)V l

where V1 j~~~~ 
for N a 1 and a N(N+i) for N � 2. Thus , we proved

Theorem 4.1

For the class of one-point iterations which use the s tandard information

of F with n evaluations where F satisfies the functional independence assump-

tion, the minimal complexity indexes z~ (F) and z(F) are bounded below by

(4.21) z (F) 
~ 
(c
F
+l) N,n

for N 1
J 1g 3

(4.22) z(F) � (c +l)<F 
~ 4(N+1) for N � 2. U

- ( _Ii -
----_

~
- — — — — — — — -

~ ~~
-. — 

—
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5. OPT IMALITY THEOREM S

In this section we deal with the complexity of the inte rp o lat ory-N ewton

iteration IN , ci � 2. Recall that under the assumptions of theorem 2.1 for

a 2 and theorem 3.1 for ci � 3 the iterat ion IN~ constructs the sequence

[xi ) suc h that

( 5.1.) e~ a G~e~~~1

where e . a 
~~~~~~~ and C~ � ~ for

- 2A
2
r) for ci = 2

(5.2) G a G( n ) a(’

l+q ) fl
~~~~

fl

~ /2 
+ 

~~~
2)2

~ 1
[(l+q)r]

2~~~ 
for n > 2

- 1 3 1 kwhere A
2 is defined by (3.1), q 

a + 
~~~~(~~~

) and k = rig cii ; see (2.7) and (3.5).

Furthermore , recall (2. 7) and (3.6) ,

(5.3) x~~1-~ 
F~ (x~_o~)~i + b j k  +

where F~ (_ 1)
fl 

~-r F ( ~r)~~ F~
h1)

(ci) and b
i k  given by (3.6) is omitted for n = 2.

From (5.3) it is reasonable to assume that

(5.4) e~~1 ~~G e~ for ~ 
a

where C G (n) is a positive number.

Theorem 5.1

If G (2r)’~~ � 1 then

(5.5) Catttp ( IN ) 
~ 
Z(IN~) lg(1+t), t ig

— —~ — -- — — ‘- —~~~ - -—~- r--~.-- -~- - — - --  . - -~~-
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n-i
IfG ( t )  �i  then

(5.6) coinp(IN ) � z ( I N ) (1 gt— lglgt) . U

Proof

From (4 .4 ) ,  (4.11) and (4 .12) it is enough to assure that a cI
~
’(t
~~
1)
~ ~1

and — G
1
~~~~

1
~
r 
~ t~

1
. This is equivalen t to ö(2fl~~~~~~~~ � 1 and G(tF)~~~ � 

2

which hold due to the assumptions . U

Remark 5.1

To assure convergence of the interpoiatory-Newton iteration IN , ci � 3 ,
_ 1

we assumed in theorem 3.1 A
2
r �~~~~. To get a good upper bound on comp lexity

we ha:e to s trengthen this inequality to G(2fl ci~~ � 1. It may be shown

that G(2r ) � 1 for ci a 2 implies A2~ � -

~

-

~~ 

. (However both inequalit ies

A
2

1•’ � and r2 r’ � seem to be s l ightly overestimated.)

Note that in general a stronger condition is needed to get “good complexity ”

than marely to assure convergence. In Traub and Wdniakowski [77 ] we showed

that for Newtr n iteration it is necessary to assume A
2
r <~~ for convergence

and A2
1 �~~~ for “good complexity”. Note that for n a 2 , ~ 2 r �  I is equ ivalent

to A2r 
�

~~~
. U

We discuss the complexity index z(IN ) of the interpolatory-Newton itera-

tion. Recall that the next approximation is obtained by k rIg n1 Newton

steps applied to w (x) — 0. It may be shown that the total  number of arith-

metic operations sufficient to perform one iterative step of IN is equa l to

~ (Ne rl~ ni + N2 (~~~~~
) 
(rig n ’~~l) for N � 2

(5.7) d(IN ) “(n 
[~
.nr1~ ni + o(l) for N 1

_ _ _ _ _- 

“
~~~~~~~T :~~~~i ~~~~~ - : — --- ——

~~~~~~
• —. 

~
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where the total  number of arithmetic operations necessary to solve a system

of N linear equations is O(N~ ) ,  ~ � 3.

Example 5.1

Cons ider the iteration IN 3 for the scalar case. We solve w . (x) = 0 by

applying k rig 31 = 2 Newton steps. Then

F (x
i
) F” (x i) 

~~ 
(x .)_1 

2

X~ 41 
Z

2 
X
i 

- 

F’ (xi) 
- 
2F’ (x

i) L~’ 
(x j~j ~~~~~~~~~

F”(xi) F(x i)where F’ (x i) F’ (X iY Thus the combinatory cost d(1N3) = 9.

Note that 
~~~

. = O(e
i
). It may be shown that a 0 does not affect the

order of iteration. Therefore one can define the next approximation as

F (x i) F” (x i) r~ 
(x i) 1 

2

(5.8) X
i 

— F’ (x i) — 2F’ (Xj) [F’ (xj)j

— •
~
(j) (j)It is easy to show that x~~1 wi (O) where w~ (F (x

~
))  g (F (x

i
) )  f or

— lj 0,1,2 where w~ is a polynomial of degree at most 2 and g(x) a F (x) is

the inverse function of F, see Kung and Traub [74]. The iteration which

constructs is called the inverse interpolatory iteration 13 and d(T3
) = 7 . ~

A similar upper bound , O(n lg ci), on the combinatory complexity for the

scalar case for inverse interpolatory iteration has been obtained by Brent

and Kung [76].

We believe there exist no iterations with essentially less combinatory

cost than that given by (5.7). We propose

---- • •- - - -
-
•-

- •~~~~~~~~~~~ --- -•- -~~~—— - - -- ~~~~~~ • - -- -~~-- 
-
~~~~~~~
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Conjecture 5.1

The combinatory complexity d (cD
n) of any iteration with maximal order ,

— n , has to be at leas t

c
1 
N2(~~~~ )log ci for n ~ 3 and c2N~ for ci a 2

for positive c1 and C
2 

independen t of ci and N. U

We turn to the problem of bounds on the minimal complexity index z (F)

and z(F), see (4.14) and (4.15) . 
-

Defini t ion 5.1

Let

z( F) z *(F)

* *for some integer ci . Then we say n is the optima l information number with

respect to z(F) (or the optimal information number) and 
~~~ 

is the optimal

information set (among one-point standard information). An iteration ~~ (or
a class of iterations 4~*) is said to be informationally optimal. U

From (4. 14) and (4 .15) we get

c i i

L c(F~~~ ) + d (I N~)
iao

z~ (F) � l g n

(5.9 

z(F)  ~ 
~~ 

c(F
(1) )

+d (j
~

- --s __i 
~~~~~

--— — ----- -- - —- - 
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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I

To get further estimates on the complexity index and to find the optima l

value of ci we must specify a relation among the c(F~
1
~). Let c(F) denote the

cos t of evaluating F(x )  and assume that each new piece of data in F(x ) ,F ’ ( x ) , . . .

cos ts the same number of ari thmetic operations . For most problems c(F)  is

proportional to N.

Definition 5.2 (Equal cost assumption)

We say F satisfies the equa l cost assumption if

(5.10) c(F~~~) = (~~
) c(F)  fo r i = 1,2,... U

Note that the equal cost assumption implies the functional independence assump-

tion but that the converse does not hold.

From (5.10) we get

c(F~~~ ) 
~~~~~~~ 1(~~l) c(F) fo r N � 2

(5 .11) i=0 a \n-lJ c (F) �
lgn Ign 

3
-j-—--

~ 
c(F) forN l.

Theorem 5.2

If F satisfies the equal cost assumption then the minimal complexity index

z(F) satisfies

(i) for N l

(5.12) j -~
—

~ 
c(F) + � z (F)  � c (F) +

(5.13) z(F)  a z 3 (F) whenever c(F)  � H
1 

23
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0
*which means that the optimal information number ci

(ii) f o r N � 2

(5.14) (N+l)[c(F)+N ] � z(F) � (N+l)[c (F) + d (tN
2

) / ( N+ 1 ) ] ,

(5.15) z(F) — z2(F) whenever c(F) � fl~~

where H [d(IN2)/(N÷l) - N(N÷2)/(2 ig 3)]/[(N+2)/(2 lg 3) - 1].

*which means that the optimal information number ci 2. U

Proof

Let N a 1. Note that (5.12) directly follows from (4.22), (5.11) and the

f t that d(73
) a 7~ We show that z

3
(F) ~ z (F) for any ci .  In fact

z (F) ~ —
~~—- c(F ) + � mm ~ (c (F)+l) = 2( c (F)+’ ruin z (F).3 lg 3 lg 3 lg ti 

~~~ 
ci

This yields c(F ) � - 2)/ (2 - -~-2_~) ~‘ 22.5 which holds due to (5 .13).

Henc e z(F)  is minimized for n 3.

Let N � 2. The lefthand side of (5.14) follows from (4.22) since Nc
F 

= c (F) .

The righthand side of (5.14) is the complexity index of Newton iteration. To

prove (5.15) observe

(N+n- A
z (F) ~ (N+ l) [c(F) + d (IN2)/(N+l)] � ruin ~~~~ / (c(F)+N) a

n�3 g n

(N+2) (c(F)+N)/ lg  3 ~~rnin z (F) ,

• ~ehich is c~~ iva lent to c(F)  ~ ft1~. This holds due to (5 .15) . Hence z(F)  is

minimized for n a 2.

—
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Remark 5.2

If Gauss elimination is used for solving linear equations then the corn-

binatory cost d(1N
2
) of Newton iteration is equal to d(1N

2
) = 4 ~~~ + ot r ’ ~~~~.

(Note that we count all arithmetic operations.) Then H in (5.15) satisfies
-

• 
R

N 

(
~ 

-~ 1~j -~~ - E~~l.lN . If the Strassen algorithm i: used to solve the

linear equations then d(1N
2

) = O( N~ ) ,  ~ = lg 7 ~‘ 2.81 and FI
N 

< 0 for large N .

This means the assumption c(F) � H is not restrictive in this case. U

Theorem 5.2 states that the optimal information number is achieved for

* *small ci , ci = 3 in the scalar case and ci = 2 in the muitivariate case , when

the equal cost assumption holds and c(F) is reasonably large . However , we

shall see in Section 6 that the optimal information number need not be small

if the equal cost assumption does not hold.

We know the optimal value of ci when F satisfies the equal cost assumption .

We seek an iteration whose complexity index z(~~) is equal to z(F). If c(F)

is large both lower and upper bounds for z(F) in (5.12) and (5.14) are tight.

Since the righthand side of (5.12) is close to the complexity index of IN 3
and the righthand side of (5.14) is the complexity index of Newton iteration

IN2, we see that any iterations in the class IN3 and IN2 
are close to optimal

among all one-poin t iterations in the scalar and multivariate cases , respec-

tively. Compare with theorem 4.2 in Kung and Traub [74 ] where the scalar case

is discussed .

We formalize the idea of opt~rral algorithm.

Definition 5.2

A one-point algorithm t~ is optimal if ~ E 
~n*~ 

has order n~ and has minimal

combinatory cost. I

- 
•-‘•-r-• —“——-- . -: - • - —

~~~~~~~~~ 
•- 

~

—•-- -- ~-_z1~~~~~~~,———-——~~-———-- s. • • - • ~~
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4
Let d3 be th e minima l combinatory cos t of combining CF (x~) ,F’ (x 1) , F”(x~~~)

to produce Z j+l 
such that z~~1 

- O(e~) in the scalar case. Let d
2
(N) be

the minimal combinatory cost of combining ~F(x.) ,F’ (x1)) to produce z~~ 1

such that 
~~~~~~~ 

0(4) in the multivariate case. We know

3 � d3 
� 7

2 *N+N � d2(N) O(N ) where E a lg 7 .

Recall that x~~ 1 is a zero of the interpolatory polynomial w~~(x) . Then

O(e~) where p — 3 for ~~ I and p 2 for N � 2 . Thus d3 is

the complexity of approximating a zero of a scalar quadratic equation and d
2

(N)

is the complexity of solving a linear equation of order N.

L *Using the iteration 1
3 

with an algorithm of minimal complexity for ap-

proximating a zero of a scalar quadratic equation and Newton i teration

IN2 
— I~ with an algorithm of minimal comp lexity for solving of l inear equations ,

we get from theorem 5.2

z(1N) z 3 (F) ~ z(F)  for N 1

z( 1N2) a z2(P) z(F) for N � 2.

Thus we have

Theorem 5.3

* *The iteration 13 is optimal for the scalar case and Newton iteration 12

is optimal for the multivariate case among al l  one-point iterations whenever

F satisfies the equal cost assumption and c(F) � HN (as defined in theorem

5. 2 ) .  U

_ _ _ _ _ _ _ _  
• • -

5’ ~~~~~~~~~~~~~~ .
- 
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p.

Remark 5.2

Along the complexity dimension Newton iteration is optimal in the multi-

variate case. But along the convergence dimension the iterations I with

la rge n seem to be more a t t ract ive . However , to preserve a “ type of globa l

conve rgence ” of I one has to approximate a zero of a pol ynomial operator

equation and this decreases the radius of convergence (see Traub and

Wo~niakowski ~76c] ) .  I

We have established the informational optimality of IN
3 
and IN

2 
with

respect to the complexity index. Of course our primary interest is in com-

plexity. Combining theorems 5.1 and 5.2 we obtain

Theorem 5.4

If c(F~~~ ) a c(F) for i � I and

(i) for N 1., G ( 3) (tF) 2 
� 1 and ~(3)(2~)

2 
� I then

c (F) + (l gt-lglgt) � comp(IN
3
) � (

~
-
~ 

c(F ) + T
2_

~ lg(1+t)

(ii) f or N � 2, G(2 ) (tr) � 1 and G(2X2’~)� 1 then

(N-4- 1) [c(F) + d ( f l~T2 ) / (N +l )  ] (lgt - lg lg t)  � comp(IN
2
) � (N+1)[~~(F) + d( 1N

2
) (N+ l’

~ ]-

lg(l+t) . I

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
--

~ 
- 

~~~~~~~~~
—-- -
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6. OPTIMAL INFORMATION NUMBER FOR A SPECIAL PROBLEM

If F does not sa t i s fy  the equal cost assumption then the optima l informa-

tion number may be large. For illustration we consider

the class of problems of fixed dimension N where the cost c(F) of evaluating

F varies and each piece of data in F’ (x),F”( x ) , . . .  costs the same number of

arithmetic operations (for instance if F is an integral this often holds).

This mean s that

(6.1) c(F (i) ) ~ +~
_I
~
) 

c1 for i 1,2 , . . .

where c
1 

— c1(N) is a positive constant. Then the information complexity is

p given by

u(F ;~~~) ~~~~~ c~ + c(F) .

From (4.19), (5.8) and (5.7) the minimal comp lexity index is bounded by

(6.2) 
c(F ) + (N~~ 1)(~~~~~~ ~ � z (F) � 

c(F) + - l~ c~ ~ ~~2(~~n - l )  - lg n

i g n  ci lg n

for a positive constant K independent of N and c i .

*Recall that we define ci by

(6.3) z(F) Zn*(F) 
— mm z (F).

The min imum j s achieved s ince z~~(F) tends to i n f i n i t y  with  ci .  We are interested

in finding n for large c(F). After some tedious algebraic manipulations we

have

V

_  • _
__ _ _ _ _ _
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Theorem 6.1

(6.4) z *(F) a N  
~~~~~~~~~~~~~~~ 

as c(F) -. ±~~ -

For every v > I there exis ts  a c
0
(’y) such that

Nv * N
(6.5) c(F) � n � c(F) for c(F) � c0 .

Theorem 6.1 states that the min imal complexity index is roughly equal to

N c(F)/lg c(F) and
1
the optima l information number n* tends to infinity a nost

linearly with c(F)
N. Note that

z (F) c (F) 
(1+o(l)) as c(F)

for fixed n. This means that the “penalty ” associated with using non-optimal

fixed ci is equal to

z (F) 1(6.6)  z *(F) 
= lg c (F ) ( 1+o ( l ) )

which tends to infinity with c(F).

• 
- -  

~~~~~~~~~ .
~~ • _- _  

-
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